Pioneers working in
the field define IVHM as the “unified capability of a system of systems
to assess the current or future state of the member system health, and
integrate that picture of system health within a framework of available
resources and operational demand.”
In technology-based industries, it is common
to see a pattern that starts with the manufacturing and sale of a
tangible product, and that gradually evolves from focusing on the
product itself to deriving value from its performance. In other words,
the service provided by the product, also referred to here as “asset,”
turns out to be more valuable to the customer in the long run.
As manufactured products mature, what
consumers look for tends to be more a matter of style (in most cases)
and reliability (in virtually all cases).
The commercial aviation industry is no
different. In fact, a modern rationale for Integrated Vehicle Health
Management (IVHM) comes from the transformation that a number of OEMs
are going through. That is, the segue from simply selling a
product—one-time upfront revenue realization, and spare parts’ sales
when needed—to providing a service that is much more sophisticated.
Services are now sold in which steady
monthly income can be derived in return for the effective maintenance of
the asset. The end result is what customers (operators and passengers
alike) want: planes that fly reliably.
To guarantee that level of availability,
a new set of highly technical capabilities is being developed as the
underpinning technology to this transformation. And the idea of shedding
light on foggy situations does apply: scheduled maintenance (known
event) is less costly than unscheduled maintenance (unknown, foggy
event).
Knowledge is power
In the past, OEMs and suppliers had very
little say on how an airplane was used or maintained, with that
responsibility falling mostly on the shoulders of the operators. Parts
were shipped according to the requirements and timing of the aircraft
owner.
Today, operators—i.e., airlines—are
moving away from such tasks, concentrating their attention on profitably
running the business of flying. OEMs and suppliers, on the other hand,
are taking over the business of guaranteeing that the planes are ready
and able to fly as expected.
That’s the new contract: availability,
reliability, deep asset knowledge, and readiness. The cost of ownership
is thus kept on budget, maximizing the potential for bigger margins.
Make no mistake: the impetus for the
IVHM value proposition on the OEM side is a commercial one. It follows
the desire to increase or maintain revenue by moving into maintenance,
or to compete in a market that is being eroded by low-cost component
suppliers.
Those working in this new field define
IVHM as the “unified capability of a system of systems to assess the
current or future state of the member system health, and integrate that
picture of system health within a framework of available resources and
operational demand.” (SAE IVHM Steering Group, 2011).
If only passive fault management and
diagnosis needed to be addressed, the “I” in IVHM would not be
necessary, nor would it be needed to take this capability to the level
it can go. But, if the integrative process of bringing together data,
reasoning, and good decision making is of interest, the challenge
is much bigger.
It surpasses the need for next-gen
sensors and overall smart computing, which are conditions sine qua non,
going deeply into who, how, and when to deal with the information these
sensors supply. In non-collaborative environments, this in itself
requires a fundamental corporate culture change. Silos will not work
here, as information is a key resource that will support problem
resolution. If not shared, the resolution simply might not happen.
The technology of IVHM enables the
collection of information on an object’s condition, performance, and
location. It also facilitates the transmission of this information,
often from hostile environments (e.g., inside a jet engine).
In the end though, it is how maintainers
use this information that will really make a difference. Although there
are quite sophisticated tools both for diagnostics and prognostics,
what will fundamentally matter are the business drivers that the data
will be used to support.
Maintaining technologies
IVHM offers options to be considered by
organizations that can be achieved through the monitoring of the health
of an asset. Decisions can then be made based on the information that is
collected.
Primarily, such decisions will enable
the maintainer to better schedule maintenance based on actual
performance and condition of an asset (the airplane itself, or any of
its parts) rather than when a component fails or when regular
maintenance cycle is performed. Any event that leads to a plane
malfunction in between these two parameters can be flagged and addressed
by consistently applying IVHM.
For passengers flying from NY to London
(or anywhere else for that matter), this will be basically an invisible,
behind-the-scenes situation. The good news is that airplanes will
depart and arrive when they are supposed to with no untoward
interruptions.
From the perspective of the operator,
the result is having more planes in the air with a lot fewer unknowns on
the ground (i.e., margin improvement and higher levels of customer
satisfaction).
The technologies foundational to IVHM
can be considered disruptive, as a technical innovation can immediately
produce a new unexpected service offering with its subsequent effect on
the market.
In a service-driven business, customers
tend to expect more service each year. With the competition from third
parties knocking at the door, this becomes, undoubtedly, a much more
dynamic business than the product business.
Recent Airbus
figures, from Aerotech 2011, predicted a 4.8% growth per year in civil
aerospace for the next 20 years. It is also predicted that some 4500
aircraft will be replaced in the same amount of time.
According to the Flightpath 2050, a
European report on the region’s vision for aviation global leadership,
the goals ahead are significant:
• Getting 90% of travelers, door to door, anywhere in Europe in less than four hours
• Achieving less than one accident per 10 M flights
• Having air-traffic management infrastructure in place to handle 25 M flights/year
With these targets in mind, it will not
be acceptable for a plane to be delayed at the gate for a “cause
unknown.” The situation will demand the unequivocal location of a faulty
LRU (Line Replaceable Unit), so it can be dealt with, getting the
aircraft back on the runway.
It will also require a movement from
accurate diagnosis of a fault, with fault forwarding so that the
aircraft can be repaired on the ground, to prognostics where the
necessary repair is known for some time in advance, and maintenance
booked when convenient.
The industry is in the midst of the dawn
of a new technological paradigm in commercial aviation. In the next
decade or so, the technology behind IVHM will be both an enabler of new
processes and a disruption to old ones, with its value affecting safety,
operations, and the financial aspects of the business.
The rewards will be available to those
who understand this change in the overall landscape and appreciate the
magnitude of the challenges facing the industry. The time is now, as
this enormous transformation will need disciplined stewardship of new
risks taken.
No comments:
Post a Comment