Labels

Saturday, 2 November 2013

Vehicle Dynamics III: Vertical oscillations

By Univ.-Prof. Dr.-Ing. Martin Meywerk - Professor for Automotive Engineering at the Helmut-Schmidt-University in Hamburg

From Bugatti Veyron to Volkswagen Beetle, from racing to passenger car: Learn how they behave on a country road and on the autobahn!

About this course
The mobility has influenced many areas of a human's life since the invention of the wheel. While, in the early days of motorized vehicles, technical developments concentrated on simple mechanical or electrical issues , in the past decades, the electronics and with it, the microprocessor technology have become a central part of innovation in vehicles. Future developments of trendsetting style will be the conversion of the drive train from purely internal combustion engine to hybrid or alternative powertrain systems, the car-to-car communication and the autonomous vehicles. Challenges that make these technical developments partly necessary, come from a desirable reduction in CO2 emissions and an increase in the active safety. To understand the recent developments, especially in the field of alternative propulsion strategies and also in the area of autonomous or semi-autonomous vehicles, a knowledge of the basic driving physics is essential, as these innovations can be understood solely as the underlying laws of physics are known.
For this reason three parts of the vehicle dynamics, the longitudinal, the lateral and the vertical dynamics are important.
Vertical oscillations
In this third part vertical dynamic aspects of vehicles will be illuminated, that means, we will describe a car running on a bumpy or rough street.
We will start with an survey of suspensions and springs and dampers. After this we will explain the description of rough streets and we will give an introduction to Fourier integrals. Then we will have a closer look at vertical models, and in the last fundamental part we will describe the conflict between driving Safety and comfort. The course will be finished by two applications from automotive mechatronics.
Course Structure
  1. Suspensions
  2. Springs, Dampers
  3. Stochastic Description of Road Surfaces
  4. Fourier Integrals
  5. Vertical Models
  6. Conflict Between Driving Safety and Comfort
  7. Application: Active Body Control
  8. Application: Active Stabilizing Rod
Learning Outcomes
  • You will know different kinds of suspensions, springs and dampers
  • You will know the description of rough and bumpy streets
  • You understand the Fourier integral
  • You understand the conflict between driving safety and comfort
  • You are able to calculate simple properties of a car
Workload
Per week: 135 - 260 min.
  • one video divided in 5 to 7 portions: 45 min.
  • 5 – 7 question-clusters for knowledge: 20 -30 min.
  • 2 – 3 question-clusters for comprehension: 25 – 50 min.
  • Guided calculation for application
  • P2P-problems to train analysis and synthesis skills: 45 min.
  • wrap-up: 0 – 90 min. (depends on your previous knowledge and your comprehension) Preparation of the exam: 30 h
Course Format
The course uses a mixture of Screencasts (with handwritten derivations, drawings, formulas), Powerpoint slides and videos from real cars, simulated cars and testrigs.
Assessments
To assess the different levels of learning this course will use different form of assessments:
  • Knowledge: Multiple choice,
  • Comprehension: correlation between statements and parts of diagrams, formulas or driving maneuver (visualized by short simulation videos);
  • Application: short guided calculations (open office),
  • Analysis: P2P-problems: longer calculations or drawings
Prior Knowledge
You should have been successful in university courses in basic mathematics and in basic engineering mechanics, especially you need:
  • Algebra
  • Trigonometric Functions
  • Differential calculus
  • Linear Algebra: Vectors, Coordinate systems etc.
  • Force, Torque, Equilibrium
  • Mass, Center of Gravity, Moment of Inertia
  • Method of Sections, Friction, Newton's Law
  • (Fourier’s integral)

3 comments:

  1. Superb i really enjoyed very much with this article here. Really its a amazing article i had ever read. I hope it will help a lot for all. Thank you so much for this amazing posts and please keep update like this excellent article.thank you for sharing such a great blog with us. expecting for your updation.
    seo company in chennai
    Digital Marketing Company in Chennai

    ReplyDelete
  2. Thank you for sharing such a nice and interesting blog with us. I have seen that all will say the same thing repeatedly. But in your blog, I had a chance to get some useful and unique information. I would like to suggest your blog in my dude circle. please keep on updates. hope it

    might be much useful for us. keep on updating...
    seo company in chennai

    Digital Marketing company in chennai

    ReplyDelete